

Flycheck — Syntax checking for GNU Emacs

Flycheck is a modern on-the-fly syntax checking extension for GNU Emacs,
intended as replacement for the older Flymake extension which is part of GNU
Emacs. For a detailed comparison to Flymake see Flycheck versus Flymake.

It uses various syntax checking and linting tools to automatically check
the contents of buffers while you type, and reports
warnings and errors directly in the buffer, or in an optional error list:

[image: _images/flycheck-annotated.png]
Out of the box Flycheck supports over 40 different programming languages with more than 80 different syntax checking tools, and
comes with a simple interface to define new
syntax checkers.

Many 3rd party extensions provide new syntax
checkers and other features like alternative error displays or mode line
indicators.

Try out

Flycheck needs GNU Emacs 24.3 or newer, and works best on Unix systems.
Windows users, please be aware that Flycheck does not support Windows
officially, although it should mostly work fine on Windows. See Windows
support and watch out for known Windows issues [https://github.com/flycheck/flycheck/labels/B-Windows%20only]!

To try Flycheck in your Emacs session install some syntax checker tools and type the following in your *scratch* buffer and
run M-x eval-buffer:

(require 'package)
(add-to-list 'package-archives
 '("MELPA Stable" . "http://stable.melpa.org/packages/") t)
(package-initialize)
(package-refresh-contents)

(package-install 'flycheck)

(global-flycheck-mode)

On MacOS also add the following to fix your $PATH environment variable:

(package-install 'exec-path-from-shell)
(exec-path-from-shell-initialize)

For a permanent installation of Flycheck follow the Installation instructions. For a gentle introduction into Flycheck
features go through Quickstart guide.

Important

If Flycheck fails to run properly or gives you any error messages please take
a look at the troubleshooting section which
covers some common setup issues and helps you debug and fix problems with
Flycheck.

The User Guide

The User Guide provides installation and usage help for Flycheck. It starts
with installation instructions and a quick start tutorial and then focuses on an
in-depth references of all parts of Flycheck.

	Installation
	Prerequisites
	Windows support

	Syntax checking tools

	Package installation
	use-package

	Distribution packages

	Legacy installation methods

	Quickstart
	Enable Flycheck

	Install syntax checker programs

	Check syntax in a buffer

	Navigate and list errors

	More features

	Troubleshooting
	Common issues
	Flycheck can’t find any programs in GUI Emacs on MacOS

	Flycheck warns about “non-zero exit code, but no errors”

	Verify your setup

	Debug syntax checkers

	If all else fails…

	Check buffers
	Check automatically

	Check manually

	Syntax checkers
	Select syntax checkers automatically

	Select syntax checkers manually

	Disable syntax checkers

	Configure syntax checkers
	Configuration files

	Change syntax checker executables

	See errors in buffers
	Error levels

	Error highlights

	Fringe icons

	Mode line

	Error thresholds

	Clear results

	List all errors
	Filter the list

	Sort the list

	Tune error list display

	Interact with errors
	Navigate errors

	Display errors

	Explain errors

	Kill errors

	Flycheck versus Flymake
	Overview

	Detailed review
	Relation to Emacs

	Enabling syntax checking

	Syntax checkers
	Definition of new syntax checkers

	Functions as syntax checkers

	Customization of syntax checkers

	Executables of syntax checkers

	Syntax checker selection
	Custom predicates

	Manual selection

	Multiple syntax checkers per buffer

	Errors
	Error levels

	Error identifiers

	Error parsing

	Error message display

	Error list

	Resource consumption
	Syntax checking

	Checking for changes

	Unit tests

The Community Guide

The Community Guide provides information about Flycheck’s

 Installation

Installation

This document gives you detailed instructions and information about installing
Flycheck.

Prerequisites

Flycheck needs GNU Emacs 24.3 and works best on Unix-like systems like
Linux or macOS. It does not support older releases of GNU Emacs or other
flavours of Emacs (e.g. XEmacs, Aquamacs, etc.).

Windows support

Flycheck does not explicitly support Windows, but tries to maintain Windows
compatibility and should generally work fine on Windows, too. However, we can
neither answer questions about Windows nor fix bugs that only occur on Windows
without the help of active Windows users. Please watch out for known Windows
issues [https://github.com/flycheck/flycheck/labels/B-Windows%20only].

Syntax checking tools

Flycheck does not check buffers itself but relies on external programs to
check buffers. These programs must be installed separately. Please take a look
at the list of supported languages to find out what
tools are required for a particular language.

Many of these programs are available in the package repositories of Linux
distributions or in Homebrew [https://brew.sh] for macOS. Others can be installed with standard
package managers such as Rubygems, NPM, Cabal, etc.

Important

For a GUI Emacs on MacOS we recommend to install and configure
exec-path-from-shell [https://github.com/purcell/exec-path-from-shell] to make Emacs use the proper $PATH and avoid a
common setup issue on MacOS.

Package installation

We recommend to install Flycheck with Emacs’ built-in package manager. Flycheck
is available in the popular MELPA Stable [https://stable.melpa.org] archive which provides packages for
Flycheck releases. We recommend to read through the changelog
before every upgrade to check for any breaking changes that might affect you.

Note

The sibling repository MELPA Stable [https://stable.melpa.org] serves up to date snapshots of
Flycheck’s

 Quickstart

Quickstart

This page gives a quick introduction into Flycheck and an overview of its most
important features. Before you start here please make sure that Flycheck is
installed.

Enable Flycheck

Now add the following code to your init file to permanently enable
syntax checking with Flycheck:

(add-hook 'after-init-hook #'global-flycheck-mode)

Install syntax checker programs

Now you need to install syntax checking programs for the languages you’d like to
use Flycheck with. The list of supported languages
tells you which languages Flycheck supports and what programs it uses.

For instance, you can install Pylint [https://pylint.org] for Python and ESLint [http://eslint.org] for Javascript:

$ pip install pylint
$ npm install eslint

Check syntax in a buffer

Now you are ready to use Flycheck in a Python or Javascript buffer. Visit a
Python or Javascript file and check whether your Flycheck setup is complete with
C-c ! v.

If everything is green, Flycheck will now start to check the buffer on the fly
while you are editing. Whenever you make a mistake that eslint or Pylint can
catch, Flycheck will highlight the corresponding place in the buffer with an
error underline whose color reflects the severity of the issue. Additionally,
Flycheck will put a symbol into the fringe for affected lines and show the total
number of errors and warnings in the buffer in the mode line.

Navigate and list errors

With C-c ! n and C-c ! p you can now jump back and forth between erroneous
places. If you keep on such a place for a little while Flycheck will show the
corresponding error message in the each area. Likewise, if you hover such a
place with the mouse cursor Flycheck will show the error message in a tooltip.

Press C-c ! l to pop up a list of all errors in the current buffer. This list
automatically updates itself when you fix errors or introduce new ones, and
follows the currently selected buffer. If the error list is selected you can
type n and p to move up and down between errors and jump to their
corresponding location in the buffer.

More features

All Flycheck commands are available in the Emacs Menu at Tools
-‣ Syntax checking:

[image: ../_images/flycheck-menu.png]
The menu of Flycheck, showing all available Flycheck commands

The same menu also pops up when you click on the mode line lighter:

[image: ../_images/flycheck-mode-line-menu.png]
The mode line menu of Flycheck

 Troubleshooting

Troubleshooting

If syntax checking does not work as expected there are a number of steps that
you can follow to isolate and maybe fix the problem.

Common issues

First check whether your issue is one of the common setup issues and problems.

Flycheck can’t find any programs in GUI Emacs on MacOS

Try to install and configure exec-path-from-shell [https://github.com/purcell/exec-path-from-shell] to make a GUI Emacs inherit
the $PATH environment variable from your shell configuration.

The issue is that due to the special way MacOS starts GUI programs a GUI Emacs
does not inherit the environment variables from the shell configuration so Emacs
will lack some important entries in $PATH, most notably /usr/local/bin/
where Homebrew, NPM and many other package managers put binaries in.

The exec-path-from-shell [https://github.com/purcell/exec-path-from-shell] works around this issue by extracting environment
variables from a shell session and inject them into the environment of the
running Emacs instance.

Flycheck warns about “non-zero exit code, but no errors”

Make sure that you have the latest version of the syntax checker installed,
particularly if the message started appearing after you updated Flycheck.

Newer releases of Flycheck may require newer versions of syntax checking tools.
For instance Flycheck might now pass a command line flag that older versions do
not understand, or attempt to parse an updated output format. In these cases
the syntax checker will show an error message about an unknown flag, or emit
output that Flycheck does not understand, which prompts Flycheck to warn that
even though the syntax checker appeared to not have successfully checked the
buffer content there are no errors to be found.

If you are using the latest version then this message most likely indicates a
flaw in the syntax checker definition. In this case please report a bug to us so that we can fix the issue. Please don’t forget
to say that you are using the latest version!

Verify your setup

If your issue is none of the aforementioned common issues the first step is to let Flycheck check your setup:

	
C-c ! v

	
M-x flycheck-verify-setup

	Show a verification buffer with information about your
Flycheck Mode setup for the current buffer.

The buffer contains all syntax checkers available for the current buffer and
tells you whether Flycheck would use each one and what reasons would prevent
Flycheck from using a checker. It also includes information about your
Flycheck and Emacs version and your operating system.

The following image shows a verification buffer:

[image: ../_images/flycheck-verify-buffer.png]
The buffer shows all syntax checkers for the current buffer. Note that you can
click on the syntax checker names to show the docstring for a syntax checker.

	Green items indicate good configuration. In the screenshot both
python-flake8 and python-pycompile exist.

	Orange items indicate a potential misconfiguration. The screenshot shows
that no configuration file was found for python-flake8 which is perfectly
fine if there’s no flake8 configuration file in the project, but not so good
if you’d like Flycheck to use a configuration file for flake8. The section
Configuration files has more information about configuration
files.

Likewise the buffer warns you that a demo syntax checker (which is not
part of Flycheck of course) isn’t registered in flycheck-checkers. If you’d
like Flycheck to automatically use this syntax checker you should fix this
issue by adding it to flycheck-checkers but otherwise it’s safe to ignore
this warning.

	Red items indicate bad configuration. python-pylint wasn’t found in the
screenshot, so you’ll not be able to use pylint in the current buffer.

Debug syntax checkers

If a syntax checker fails although it successfully verified you need to take a
closer look. Flycheck provides you with a command that lets you run a single
syntax checker just the way Flycheck would run it:

	
C-c ! C-c

	
M-x flycheck-compile

	Prompt for a syntax checker and run in as a shell command, showing the whole
output in a separate buffer.

Important

The current implementation this command suffers from a couple of issues,
so we’d like to have a replacement in GH-854 [https://github.com/flycheck/flycheck/issues/854] and we could use your help!
If you’d like to help out with this task please join the discussion in
that issue.

The output of this command can provide you helpful clues about what’s going on.
It also helps to compare the output of the command in Emacs with what happens if
you run the same command in a terminal.

If all else fails…

…please do ask for help. We have many different
channels, from Twitter to a chat room to StackOverflow, whatever suits you best,
and we try to help you as fast and as well as possible.

 Check buffers

Check buffers

Flycheck provides two Emacs minor modes for automatic syntax checking:
Flycheck Mode to enable syntax checking in the current buffer, and
Global Flycheck Mode to enable syntax checking in all buffers whenever
possible.

	
Minor Mode Flycheck Mode

	Enable automatic syntax checking in the
current buffer.

	
Minor Mode Global Flycheck Mode

	Enable Flycheck Mode in all buffers where syntax checking is possible.

Note

This mode does not enable Flycheck Mode in remote files (via
TRAMP) and encrypted files. Checking remote files may be very slow
depending on the network connections, and checking encrypted files would
leak confidential data to temporary files and subprocesses.

You can manually enable Flycheck Mode in these buffers nonetheless, but
we do not recommend this for said reasons.

Add the following to your init file to enable syntax checking
permanently:

(add-hook 'after-init-hook #'global-flycheck-mode)

You can exclude specific major modes from syntax checking with
flycheck-global-modes:

	
defcustom flycheck-global-modes

	Major modes for which Global Flycheck Mode turns on Flycheck Mode:

	t (the default)

	Turn Flycheck Mode on for all major modes.

	(foo-mode …)

	Turn Flycheck Mode on for all major modes in this list,
i.e. whenever the value of major-mode is contained in this list.

	(not foo-mode …)

	Turn Flycheck Mode on for all major nodes not in this list,
i.e. whenever the value of major-mode is not contained in this
list.

Note

Global Flycheck Mode never turns on Flycheck Mode in major modes
whose mode-class property is special, regardless of the value
of this option. Syntax checking simply makes no sense in special
buffers which are typically intended for non-interactive display rather
than editing.

See also

	Major Mode Conventions(elisp) [http://www.gnu.org/software/emacs/manual/html_node/elisp/Major-Mode-Conventions.html#Major-Mode-Conventions]

	Information about major modes, and modes marked as special.

Check automatically

By default Flycheck Mode automatically checks a buffer whenever

	it is enabled,

	the buffer is saved,

	a new line is inserted,

	or a short time after the last change was made in a buffer.

You can customise this behaviour with flycheck-check-syntax-automatically:

	
defcustom flycheck-check-syntax-automatically

	A

 Syntax checkers

Syntax checkers

Flycheck does not check buffers on its own. Instead it delegates this task to
external syntax checkers which are external programs or services that receive
the contents of the current buffer and return a list of errors in the buffer,
together with metadata that tells Flycheck how to run the program, how to pass
buffer contents to it, and how to extract errors.

See also

	Supported Languages

	A complete list of all syntax checkers included in Flycheck

Like everything else in Emacs syntax checkers have online documentation which
you can access with C-c ! ?:

	
C-c ! ?

	
M-x flycheck-describe-checker

	Prompt for the name of a syntax checker and pop up a Help buffer with its
documentation.

The documentation includes the name of the program or service used, a

 See errors in buffers

See errors in buffers

When a syntax check in the current buffer has finished Flycheck reports the
results of the check in the current buffer in two ways:

	Highlight errors, warnings, etc. directly in the buffer according to
flycheck-highlighting-mode.

	Indicate errors, warnings, etc. in the fringe according to
flycheck-indication-mode.

Additionally Flycheck indicates its current state and the number of errors and
warnings in the mode line.

The following screenshot illustrates how this looks like in the default Emacs
color theme. It shows an info, a warning and an error annotation, from top to
bottom. Please also note the fringe indicators on the left side and the
emphasized mode line indicator in the bottom right corner:

[image: Flycheck showing info, warning and error annotations]

Note

The colours of fringe icons and the whole appearance of the error highlights
depend on the active color theme. Although red, orange and green or blue
seem to be somewhat standard colours for Flycheck’s annotations across many
popular themes, please take a closer look at your color theme if you’re in
doubt about the meaning of a Flycheck highlight.

Error levels

All errors that syntax checkers report have a level which tells you the
severity of the error. Flycheck has three built-in levels:

	error

	Severe errors like syntax or type errors.

	warning

	Potential but not fatal mistakes which you should likely fix nonetheless.

	info

	Purely informational messages which inform about notable things in the
current buffer, or provide additional help to fix errors or warnings.

Each error level has a distinct highlighting and colour which helps you to
identify the severity of each error right in the buffer.

Error highlights

Flycheck highlights errors directly in the buffer according to
flycheck-highlighting-mode. By default these highlights consist of a coloured
wave underline which spans the whole symbol at the error location as in the
screenshot above but the highlights are entirely customisable. You can change
the extents of highlighting or disable it completely with
flycheck-highlighting-mode, or customise Flycheck’s faces to change the style
of the underline or use different colours.

	
defcustom flycheck-highlighting-mode

	How Flycheck highlights errors and warnings in the buffer:

	nil

	Do not highlight anything at all.

	lines

	Highlight the whole line and discard any information about the column.

	columns

	Highlight the column of the error if any, otherwise like lines.

	symbols

	Highlight the entire symbol around the error column if any, otherwise like
columns. This is this default.

	sexps

	Highlight the entire expression around the error column if any, otherwise
like columns.

Warning

In some major modes sexps is very slow, because discovering
expression boundaries efficiently is hard.

The built-in python-mode is known to suffer from this issue.

Be careful when enabling this mode.

The highlights use the following faces depending on the error level:

	
defface flycheck-error

	
defface flycheck-warning

	
defface flycheck-info

	The highlighting face for error, warning and info levels
respectively.

Fringe icons

In GUI frames Flycheck also adds indicators to the fringe—the left or right
border of an Emacs window that is—to help you identify erroneous lines quickly.
These indicators consist of a rightward-pointing double arrow shape coloured in
the colour of the corresponding error level.

Note

Flycheck extensions can define custom error levels with different fringe
indicators. Furthermore some Emacs distributions like Spacemacs redefine
Flycheck’s error levels to use different indicators. If you’re using such a
distribution please take a look at its documentation if you’re unsure about
the appearance of Flycheck’s indicators.

Note that we discourage you from changing the shape of Flycheck’s fringe
indicators.

You can customise the location of these indicators (left or right fringe) with
flycheck-indication-mode which also lets you turn off these indicators
completely:

	
defcustom flycheck-indication-mode

	How Flycheck indicates errors and warnings in the buffer fringes:

	left-fringe or right-fringe

	Use the left or right fringe respectively.

	nil

	Do not indicate errors and warnings in the fringe.

The following faces control the colours of the fringe indicators. However they
do not let you change the shape of the indicators—to achieve this you’d have to
redefine the error levels with flycheck-define-error-level.

	
defface flycheck-fringe-error

	
defface flycheck-fringe-warning

	
defface flycheck-fringe-info

	The icon faces for error, warning and info levels respectively.

Mode line

Like all minor modes Flycheck also has a mode line indicator. You can see it in
the bottom right corner of the above screenshot. By default the indicator shows
Flycheck’s current state via one of the following texts:

	FlyC*
	Flycheck is checking the buffer currently.

	FlyC
	There are no errors or warnings in the current buffer.

	FlyC:3/5
	There are three errors and five warnings in the current buffer.

	FlyC-
	Flycheck did not find a syntax checker for the current buffer.
Take a look at the list of supported languages and type C-c ! v to see what checkers
are available for the current buffer.

	FlyC!
	The last syntax check failed. Inspect the *Messages* buffer
look for error messages, and consider reporting a bug.

	FlyC?
	The last syntax check had a dubious result. The definition of a
syntax checker may have a bug. Inspect the *Messages*
buffer and consider reporting a bug.

You can entirely customise the mode line indicator with flycheck-mode-line:

	
defcustom flycheck-mode-line

	A “mode line construct” for Flycheck’s mode line indicator.

See also

	Mode Line Data(elisp) [http://www.gnu.org/software/emacs/manual/html_node/elisp/Mode-Line-Data.html#Mode-Line-Data]

	Documentation of mode line constructs.

	flycheck-status-emoji [https://github.com/liblit/flycheck-status-emoji]

	A Flycheck extension which puts emojis into Flycheck’s mode line
indicator.

	flycheck-color-mode-line [https://github.com/flycheck/flycheck-color-mode-line]

	A Flycheck extension which colours the entire mode line according to
Flycheck’s status.

Error thresholds

To avoid flooding a buffers with excessive highlighting, cluttering the
appearance and slowing down Emacs, Flycheck takes precautions against syntax
checkers that report a large number of errors exceeding
flycheck-checker-error-threshold:

	
defcustom flycheck-checker-error-threshold

	The maximum number of errors a syntax checker is allowed to report.

If a syntax checker reports more errors the error information is
discarded. To not run into the same issue again on the next syntax check
the syntax checker is automatically added to flycheck-disabled-checkers in
this case to disable it for the next syntax check.

Clear results

You can explicitly remove all highlighting and indication and all error
information from a buffer:

	
C-c ! C

	
M-x flycheck-clear

	Clear all reported errors, all highlighting and all indication icons from the
current buffer.

	
C-u C-c ! C

	
C-u M-x flycheck-clear

	Like C-c ! C but also interrupt any syntax check currently running. Use
this command if you think that Flycheck is stuck.

 List all errors

List all errors

You can see all errors in the current buffer in Flycheck’s error list:

[image: ../_images/flycheck-error-list.png]
The key C-c ! l pops up the error list:

	
C-c ! l

	
M-x flycheck-list-errors

	
M-x list-flycheck-errors

	Pop up a list of errors in the current buffer.

The error list automatically updates itself after every syntax check and follows
the current buffer: If you switch to different buffer or window it automatically
shows the errors of the now current buffer. The buffer whose errors are shown
in the error list is the source buffer.

Whenever the point is on an error in the source buffer the error list
highlights these errors—the green line in the screenshot above.

Within the error list the following key bindings are available:

	RET
	Go to the current error in the source buffer

	n
	Jump to the next error

	p
	Jump to the previous error

	e
	Explain the error

	f
	Filter the error list by level

	F
	Remove the filter

	S
	Sort the error list by the column at point

	g
	Check the source buffer and update the error list

	q
	Quit the error list and hide its window

Filter the list

By the default the error list shows all errors but sometimes you’d like to hide
warnings to focus only on real errors. The error list lets you hide all errors
below a certain level with f. This key prompts for an error level and
will remove all errors of lower levels from the list. The filter is permanent
as long as the error list buffer stays alive or the filter is reset with
F.

Sort the list

You can press S or click on the column headings to sort the error list by
any of the following columns:

	Line

	Level

	ID

	Message and checker

Click twice or press S repeatedly to flip the sort order from ascending
to descending or vice versa.

Tune error list display

By default the error list buffer pops up like any other buffer. Flycheck does
not enforce special rules on how it’s displayed and where it’s located in the
frame so essentially the error list pops up at arbitrary places wherever Emacs
can find a window for it.

However you can tell Emacs to obey certain rules when displaying buffers by
customizing the built-in option display-buffer-alist. You can use this option
to make the error list display like similar lists in contemporary IDEs like
VisualStudio, Eclipse, etc. with the following code in your init file:

(add-to-list 'display-buffer-alist
 `(,(rx bos "*Flycheck errors*" eos)
 (display-buffer-reuse-window
 display-buffer-in-side-window)
 (side . bottom)
 (reusable-frames . visible)
 (window-height . 0.33)))

This display rule tells Emacs to always display the error list at the bottom
side of the frame, occupying a third of the entire height of the frame.

See also

	Shackle [https://github.com/wasamasa/shackle]

	An Emacs package which provides an alternative way to control buffer
display

 Interact with errors

Interact with errors

There are a couple of things that you can do with Flycheck errors in a buffer:

	You can navigate to errors, and go to the next or previous error.

	You can display errors to read their error messages.

	You can put error messages and IDs into the kill ring.

This section documents the corresponding commands and their customisation
options.

Navigate errors

By default Flycheck hooks into Emacs’ standard error navigation on M-g n
(next-error) and M-g p (previous-error). When Flycheck Mode is
enabled these commands will jump to the next and previous Flycheck error
respectively. See Compilation Mode(emacs) [http://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation-Mode.html#Compilation-Mode] for more information
about these commands.

This way you don’t need to learn special keybindings to navigate Flycheck
errors; navigation should just work out of the box.

Note

Visible compilation buffers such as buffers from M-x compile, M-x
grep, etc. still take precedence over Flycheck’s

 Flycheck versus Flymake

Flycheck versus Flymake

This article provides information about Flycheck compares to the built-in
Flymake mode. It does not consider third-party extensions such as flymake-easy [https://github.com/purcell/flymake-easy]
or flymake-cursor [https://www.emacswiki.org/emacs/flymake-cursor.el], but references them at appropriate places.

We aim for this comparison to be neutral and complete, but do not provide any
guarantee for completeness or correctness of the following information.
Moreover, we consider Flycheck superior to Flymake in all aspects. As such, you
may find this page biased towards Flycheck. Please excuse this as well as any
factual mistake or lack of information. Please suggest improvements.

Important

This comparison was written around the time Emacs 24.5 was released, and only
updated infrequently since then. Flycheck has changed and hopefully improved
meanwhile, and Flymake may have done so as well. As such parts of this
article may be outdated and have become incorrect by now. Likewise
screenshots that show particular behaviour of Flycheck or Flymake have aged;
the corresponding features of Flycheck and Flymake may look different now, or
have gone altogether.

Please report any incorrectness and any inconsistency you find, and feel free
to edit this page [https://github.com/flycheck/flycheck/edit/master/doc/user/flycheck-versus-flymake.rst] and improve it.

Overview

This table intends to give an overview about the differences and similarities
between Flycheck and the default install of Flymake. It is not a direct
comparison to third-party extensions like flymake-easy [https://github.com/purcell/flymake-easy] or flymake-cursor [https://www.emacswiki.org/emacs/flymake-cursor.el]. For
a more comprehensive look compared to those extensions, please read the details
in the main article and the footnotes.

Please do not use this table alone to make your personal judgment. Read the
detailed review in the following sections, too, at least with regards to the
features you are interested in.

	
	Flycheck
	Flymake

	Supports Emacs versions
	24.3
	22+

	Built-in
	no [1]
	yes

	Enables automatically
if possible
	yes
	no

	Checks after
	save, newline, change
	newline, change

	Checks in background
	yes
	yes

	Automatic syntax
checker selection
	By major mode and
custom predicates
	By file name patterns
[2]

	Manual syntax checker
selection
	yes
	no

	Multiple syntax
checkers per buffer
	yes
	no [3]

	Supported languages
	>40
	~5 [4]

	Checking remote files
via Tramp
	said to work, but not
officially supported
[5]
	partly?

	Definition of new
syntax checkers
	Single declarative
function/macro
	Function definition and
various variables [6]

	Functions as syntax
checkers
	yes
	no [7]

	Error levels
	errors, warnings,
informational, custom
levels
	errors, warnings

	Error identifiers
	yes
	no

	Error parsing
	Regular expressions,
custom parsers for
structured formats
(XML, JSON, etc.)
	Regular expressions

	Multiline error
messages
	yes
	no

	Error highlighting in
buffers
	yes
	yes

	Fringe icons for errors
	yes
	yes (Emacs 24.1+)

	Error message display
	Tooltip, echo area,
fully customizable
	Tooltip only [8]

	List of all errors
	yes
	no

	Resource consumption
	low
	high

	Unit tests
	all syntax checkers,
large parts of
internals
	none?

Detailed review

Relation to Emacs

Flymake is part of GNU Emacs since GNU Emacs 22. As such, contributions to
Flymake are subject to the FSF policies on GNU projects. Most notably,
contributors are required to assign their copyright to the FSF by signing a
contributor agreement.

Flycheck is not part of GNU Emacs, and is unlikely to ever be (see
issue 801 [https://github.com/flycheck/flycheck/issues/801]). However, it is free software as well, and publicly developed on
the well-known code hosting platform Github [https://github.com/flycheck/flycheck].
Contributing to Flycheck does not require a copyright assignments.

Enabling syntax checking

Flymake is not enabled automatically for supported languages. It must be be
enabled for each mode individually and carefully, because it does not deal
well with unavailable syntax checker tools. In a GUI frame, it signals errors
in GUI dialogs. In a TTY frame, it does not signal any error at all, but
instead silently hangs. The same occurs when a syntax checker tool becomes
unavailable after Flymake Mode is enabled (for instance, because the underlying
tool was uninstalled).

[image: ../_images/flymake-error.png]
Flymake showing a GUI dialog to inform that a syntax checker tool is not
available

The third-party library flymake-easy [https://github.com/purcell/flymake-easy] provides an alternate way to enable
Flymake Mode, which gracefully handles unavailable syntax checkers. It does not
check whether the tool still exists before a syntax check, though, and thus does
still exposes above behavior when a tool becomes unavailable after the mode was
enabled.

Flycheck provides a global mode global-flycheck-mode, which enables syntax
checking in every supported language. If a syntax checking tool is not
available Flycheck fails gracefully, does not enable syntax checking, and just
indicates the failure in the mode line.

Syntax checkers

Flymake supports Java, Makefiles, Perl, PHP, TeX/LaTeX and XML. Notably, it
does not support Emacs Lisp. However, there are many recipes for other
languages on the Flymake page [https://www.emacswiki.org/emacs/FlyMake] in the EmacsWiki and many extension packages
for other languages in the popular ELPA archive MELPA [http://melpa.org/].

Flycheck provides support for over 40 languages with over 70 syntax
checkers, most of them contributed by the community. Notably, Flycheck does
not support Java and Makefiles.

Definition of new syntax checkers

Flymake does not provide a single function to define a new syntax checker.
Instead, one has to define an “init” function, which returns the command, and
add this function to flymake-allowed-file-name-masks. Additionally, one has
to add the error patterns to flymake-err-line-patterns. As such, defining a
syntax checker is difficult for users who are not familiar with Emacs Lisp.
flymake-easy [https://github.com/purcell/flymake-easy] provides an easier way to define new syntax checkers, though.

Flycheck provides a single function flycheck-define-checker to define a
new syntax checker. This function uses a declarative syntax which is easy to
understand even for users unfamiliar with Emacs Lisp. In fact most syntax
checkers in Flycheck were contributed by the community.

For example, the Perl checker in Flymake is defined as follows:

(defun flymake-perl-init ()
 (let* ((temp-file (flymake-init-create-temp-buffer-copy
 'flymake-create-temp-inplace))
 (local-file (file-relative-name
 temp-file
 (file-name-directory buffer-file-name))))
 (list "perl" (list "-wc " local-file))))

(defcustom flymake-allowed-file-name-masks
 '(;; …
 ("\\.p[ml]\\'" flymake-perl-init)
 ;; …
))

(defvar flymake-err-line-patterns
 (append
 '(;; …
 ;; perl
 ("\\(.*\\) at \\([^ \n]+\\) line \\([0-9]+\\)[,.\n]" 2 3 nil 1)
 ;; …
)
 ;; …
))

Whereas Flycheck’s definition of the same checker looks like this:

(flycheck-define-checker perl
 "A Perl syntax checker using the Perl interpreter.

See URL `http://www.perl.org'."
 :command ("perl" "-w" "-c" source)
 :error-patterns
 ((error line-start (minimal-match (message))
 " at " (file-name) " line " line
 (or "." (and ", " (zero-or-more not-newline))) line-end))
 :modes (perl-mode cperl-mode))

Functions as syntax checkers

Flymake cannot check a buffer with a custom Emacs Lisp function.

Flycheck provides the flycheck-define-generic-checker function to define a
syntax checker based on an arbitrary Emacs Lisp function. Flycheck supports
synchronous as well as asynchronous functions, and provides simple
callback-based protocol to communicate the status of syntax checks. This allows
Flycheck to use persistent background processes for syntax checking. For
instance, flycheck-ocaml [https://github.com/flycheck/flycheck-ocaml] uses a running Merlin [https://github.com/ocaml/merlin] process to check OCaml buffers.
This is much easier and faster than invoking the OCaml compiler.

Customization of syntax checkers

Flymake does not provide built-in means to customize syntax checkers.
Instead, when defining a new syntax checker the user needs to declare
customization variables explicitly and explicitly check their value in the init
function.

Flycheck provides built-in functions to add customization variables to
syntax checkers and splice the value of these variables into the argument list
of a syntax checking tool. Many syntax checkers in Flycheck provide
customization variables. For instance, you can customize the enabled warnings
for C with flycheck-clang-warnings. Flycheck also tries to automatically find
configuration files for syntax checkers.

Executables of syntax checkers

Flymake does not provide built-in means to change the executable of a syntax
checker.

Flycheck implicitly defines a variable to set the path of a syntax checker
tool for each defined syntax checker and provides the interactive command
flycheck-set-checker-executable to change the executable used in a buffer.

Syntax checker selection

Flymake selects syntax checkers based on file name patterns in
flymake-allowed-file-name-masks. Effectively this duplicates the existing
logic Emacs uses to choose the right major mode, but lacks its flexibility and
power. For instance, Flymake cannot pick a syntax checker based on the shebang
of a file.

Flycheck uses the major mode to select a syntax checker. This reuses the
existing sophisticated logic Emcas uses to choose and configure major modes.
Flycheck can easily select a Python syntax checker for a Python script without
file extension, but with proper shebang, simply because Emacs correctly chooses
Python Mode for such a file.

Custom predicates

Flymake does not allow for custom predicates to implement more complex logic
for syntax checker selection. For instance, Flymake cannot use different syntax
checkers for buffer depending on the value of a local variable.

However, flymake-easy [https://github.com/purcell/flymake-easy] patches Flymake to allow for custom syntax checkers per
buffer. This does not happen automatically though. The user still needs to
explicitly register a syntax checker in a major mode hook.

Flycheck supports custom predicate function. For instance, Emacs uses a
single major mode for various shell script types (e.g. Bash, Zsh, POSIX Shell,
etc.), so Flycheck additionally uses a custom predicate to look at the value of
the variable sh-shell in Sh Mode buffers to determine which shell to use for
syntax checking.

Manual selection

Flymake does not provide means to manually select a specific syntax checker,
either interactively, or via local variables.

Flycheck provides the local variable flycheck-checker to explicitly use a
specific syntax checker for a buffer and the command flycheck-select-checker
to set this variable interactively.

Multiple syntax checkers per buffer

Flymake can only use a single syntax checker per buffer. Effectively, the
user can only use a single tool to check a buffer, for instance either PHP Mess
Detector or PHP CheckStyle. Third party extensions to Flycheck work around this
limitation by supplying custom shell scripts to call multiple syntax checking
tools at once.

Flycheck can easily apply multiple syntax checkers per buffer. For
instance, Flycheck will check PHP files with PHP CLI first to find syntax
errors, then with PHP MessDetector to additionally find idiomatic and semantic
errors, and eventually with PHP CheckStyle to find stylistic errors. The user
will see all errors reported by all of these utilities in the buffer.

Errors

Error levels

Flymake supports error and warning messages. The pattern of warning
messages is hard-coded in Emacs 24.3, and only became customizable in Emacs
24.4. The patterns to parse messages are kept separate from the actual syntax
checker.

Flycheck supports error, warning and info messages. The patterns to parse
messages of different levels are part of the syntax checker definition, and thus
specific to each syntax checker. Flycheck allows to define new error levels for
use in custom syntax checkers with flycheck-define-error-level.

Error identifiers

Flymake does not support unique identifiers for different kinds of errors.

Flycheck supports unique identifiers for different kinds of errors, if a
syntax checker provides these. The identifiers appear in the error list and in
error display, and can be copied independently, for instance for use in an
inline suppression comment or to search the web for a particular kind of error.

Error parsing

Flymake parses the output of syntax checker tools with regular expressions
only. As it splits the output by lines regardless of the regular expressions,
it does not support error messages spanning multiple lines (such as returned by
the Emacs Lisp byte compiler or by the Glasgow Haskell Compiler).

flymake-easy [https://github.com/purcell/flymake-easy] overrides internal Flymake functions to support multiline error
messages.

Flycheck can use regular expressions as well as custom parsing functions.
By means of such functions, it can parse JSON, XML or other structured output
formats. Flycheck includes some ready-to-use parsing functions for well-known
output formats, such as Checkstyle XML. By parsing structured output format,
Flycheck can handle arbitrarily complex error messages. With regular
expressions it uses the error patterns to split the output into tokens and thus
handles multiline messages just as well.

Error message display

[image: ../_images/flymake-tooltip.png]
Flymake error message in tooltip

[image: ../_images/flycheck-tooltip-and-echo-area.png]
Flycheck error message in tooltip and echo area

In GUI frames, Flymake shows error messages in a tool tip, if the user
hovers the mouse over an error location. It does not provide means to show
error messages in a TTY frame, or with the keyboard only.

The third-party library flymake-cursor [https://www.emacswiki.org/emacs/flymake-cursor.el] shows Flymake error messages at point
in the echo area, by overriding internal Flymake functions.

Flycheck shows error message tool tips as well, but also displays error
messages in the echo area, if the point is at an error location. This feature
is fully customizable via flycheck-display-errors-function.

Error list

Flymake does not provide means to list all errors in the current buffer.

Flycheck can list all errors in the current buffer in a separate window.
This error list is automatically updated after each syntax check, and follows
the focus.

[image: ../_images/flycheck-error-list.png]
Listing all errors in the current buffer

Resource consumption

Syntax checking

Flymake starts a syntax check after every change, regardless of whether the
buffer is visible in a window or not. It does not limit the number of
concurrent syntax checks. As such, Flymake starts many concurrent syntax
checks when many buffers are changed at the same time (e.g. after a VCS revert),
which is known to freeze Emacs temporarily.

Flycheck does not conduct syntax checks in buffers which are not visible in
any window. Instead it defers syntax checks in such buffers until after the
buffer is visible again. Hence, Flycheck does only start as many concurrent
syntax checks as there are visible windows in the current Emacs session.

Checking for changes

Flymake uses a separate timer (in flymake-timer) to periodically check
for changes in each buffer. These timers run even if the corresponding buffers
do not change. This is known to cause considerable CPU load with many open
buffers.

Flycheck does not use timers at all to check for changes. Instead it
registers a handler for Emacs’ built-in after-change-functions hook which is
run after changes to the buffer. This handler is only invoked when the buffer
actually changed and starts a one-shot timer to delay the syntax check until the
editing stopped for a short time, to save resources and avoid checking
half-finished editing.

Unit tests

Flymake does not appear to have a test suite at all.

Flycheck has unit tests for all built-in syntax checkers, and for large
parts of the underlying machinery and API. Contributed syntax checkers are
required to have test cases. A subset of the test suite is continuously run on
Travis CI [https://travis-ci.org/flycheck/flycheck].

Footnotes

	[1]	Flycheck is unlikely to ever become part of Emacs, see issue 801 [https://github.com/flycheck/flycheck/issues/801].

	[2]	The 3rd party library flymake-easy [https://github.com/purcell/flymake-easy] allows to use syntax checkers per
major mode.

	[3]	Various 3rd party packages thus use custom shell scripts to call multiple
syntax checking tools at once.

	[4]	However, the Flymake page [https://www.emacswiki.org/emacs/FlyMake] in the EmacsWiki provides recipes for many
other languages, although of varying quality. Furthermore, the popular
ELPA archive MELPA provides many packages which add more languages to
Flymake.

	[5]	See for instance this comment [https://github.com/flycheck/flycheck/issues/883#issuecomment-188248824].

	[6]	flymake-easy [https://github.com/purcell/flymake-easy] provides a function to define a new syntax checker, which
sets all required variables at once.

	[7]	flymake-easy [https://github.com/purcell/flymake-easy] overrides internal functions of Flymake to add
support for multiline error messages.

	[8]	The 3rd party library flymake-cursor [https://www.emacswiki.org/emacs/flymake-cursor.el] shows Flymake error messages at
point in the echo area.

 Flycheck Code of Conduct

Flycheck Code of Conduct

Our Code of Conduct defines the social norms and policies within Flycheck’s
community. Whenever you interact with Flycheck or Flycheck developers, whether
in our official channels or privately, you’re expected to follow this Code of
Conduct.

Conduct

Contact: Any moderator

	We are committed to providing a friendly, safe and welcoming environment for
all, regardless of level of experience, gender, gender identity and
expression, sexual orientation, disability, personal appearance, body size,
race, ethnicity, age, religion, nationality, or similar personal
characteristic.

	Please avoid using overtly sexual nicknames or other nicknames that might
detract from a friendly, safe and welcoming environment for all.

	Please be kind and courteous. There’s no need to be mean or rude.

	Please do not curse or use bad words. Foul language will not help us to build
a great product.

	Respect that people have differences of opinion and that every design or
implementation choice carries a trade-off and numerous costs. There is seldom
a right answer.

	Please keep unstructured critique to a minimum. If you have solid ideas you
want to experiment with, make a fork and see how it works.

	We will exclude you from interaction if you insult, demean or harass
anyone. That is not welcome behaviour. We interpret the term “harassment” as
including the definition in the Citizen Code of Conduct [http://citizencodeofconduct.org/]; if you have any
lack of clarity about what might be included in that concept, please read
their definition. In particular, we don’t tolerate behavior that excludes
people in socially marginalized groups.

	Private harassment is also unacceptable. No matter who you are, if you feel
you have been or are being harassed or made uncomfortable by a community
member, please contact a moderator
immediately. Whether you’re a regular contributor or a newcomer, we care about
making this community a safe place for you and we’ve got your back.

	Likewise any spamming, trolling, flaming, baiting or other attention-stealing
behaviour is not welcome.

Moderation

These are the policies for upholding our community’s standards of conduct in our
communication channels, most notably in Flycheck’s Github organisation and in
Flycheck’s Gitter channels.

	Remarks that violate the Flycheck code of conduct, including hateful,
hurtful, oppressive, or exclusionary remarks, are not allowed.

	Remarks that moderators find inappropriate, whether listed in the code of
conduct or not, are also not allowed.

	Moderators will first respond to such remarks with a warning.

	If the warning is unheeded, the user will be “kicked,” i.e., kicked out of
the communication channel to cool off.

	If the user comes back and continues to make trouble, they will be banned,
i.e., indefinitely excluded.

	Moderators may choose at their discretion to un-ban the user if it was a
first offense and they offer the offended party a genuine apology.

	If a moderator bans someone and you think it was unjustified, please take it
up with that moderator, or with a different moderator, in
private. Complaints about bans in-channel are not allowed.

	Moderators are held to a higher standard than other community members. If a
moderator creates an inappropriate situation, they should expect less leeway
than others.

In the Flycheck community we strive to go the extra step to look out for each
other. Don’t just aim to be technically unimpeachable, try to be your best
self. In particular, avoid flirting with offensive or sensitive issues,
particularly if they’re off-topic; this all too often leads to unnecessary
fights, hurt feelings, and damaged trust; worse, it can drive people away from
the community entirely.

And if someone takes issue with something you said or did, resist the urge to be
defensive. Just stop doing what it was they complained about and apologize. Even
if you feel you were misinterpreted or unfairly accused, chances are good there
was something you could have communicated better — remember that it’s your
responsibility to make your fellow Flycheck people comfortable. Everyone wants
to get along and we are all here first and foremost because we want to talk
about cool technology. You will find that people will be eager to assume good
intent and forgive as long as you earn their trust.

—

Adapted from the Rust Code of Conduct [https://www.rust-lang.org/conduct.html].

Copyright (c) 2015 Sebastian Wiesner and Flycheck contributors

Copyright (c) 2014 The Rust Project Developers

 Recommended extensions

Recommended extensions

The Emacs community has produced a number of extensions to Flycheck. This page
lists all that we know of and can safely recommend to our users.

Official extensions are (co-)maintained by the Flycheck maintainers who will take care to update official extensions in case
of breaking changes in Flycheck and work to provide extra API for extensions if
needed. If you’d like to make your extension an official one and move it into
the Flycheck Github organisation [https://github.com/flycheck] please contact a maintainer.

If you do know extensions not in this list, or would like to see your own
extension here, please feel free to add it [https://github.com/flycheck/flycheck/edit/master/doc/community/extensions.rst].

We would like to thank all people who created and contributed to Flycheck
extensions for their awesome work. Without your help and support Flycheck would
not be what it is today.

User interface

These extensions change Flycheck’s user interface:

	flycheck-color-mode-line [https://github.com/flycheck/flycheck-color-mode-line] (official) colors the mode line according
to the Flycheck status.

	flycheck-pos-tip [https://github.com/flycheck/flycheck-pos-tip] (official) shows Flycheck error messages in a
graphical popup.

	liblit/flycheck-status-emoji [https://github.com/liblit/flycheck-status-emoji] adds cute emoji (e.g. 😱 for errors) to
Flycheck’s

 Get help

Get help

Please ask questions about Flycheck on Stack Exchange [https://emacs.stackexchange.com/questions/tagged/flycheck] or in our Gitter
chat [https://gitter.im/flycheck/flycheck]. We try to answer all questions as fast and as precise as possible.

To report bugs and problems please please use our issue tracker [https://github.com/flycheck/flycheck/issues]. Please note that we have a special policy for
Windows-only issues.

Please follow our Code of Conduct in all these places.

 People

People

Teams

Maintainers

	Clément Pit-Claudel (cpitclaudel [https://github.com/cpitclaudel], owner)

	fmdkdd (fmdkdd [https://github.com/fmdkdd], owner)

We maintain Flycheck and all official extensions within the Flycheck
organisation [https://github.com/flycheck], and set the direction and scope of Flycheck. We review and
accept pull requests and feature proposals and fix bugs in Flycheck.

Emphasized users are also owners of the Flycheck Organisation [https://github.com/flycheck], and thus have
administrative privileges for all repositories in Flycheck. Notably only owners
can currently make Flycheck releases, and their GPG keys sign release tags for
Flycheck.

Mention with @flycheck/maintainers.

Moderators

Our moderators help uphold our Flycheck Code of Conduct. Currently, we do not have a
dedicated moderation team; all our Maintainers also serve as
moderators in our Github organisation and in our official communication
channels.

Mention with @flycheck/moderators.

Note

If you’d like to help out with moderation, please contact a maintainer.

Language teams

These teams provide support for particular languages in Flycheck.

Elixir

	Aaron Jensen (aaronjensen [https://github.com/aaronjensen])

	Kári Tristan Helgason (kthelgason [https://github.com/kthelgason])

Mention with @flycheck/elixir.

Go

	Dominik Honnef (dominikh [https://github.com/dominikh])

Mention with @flycheck/go.

Haskell

	Sergey Vinokurov (sergv [https://github.com/sergv])

Mention with @flycheck/haskell.

Javascript

	Saša Jovanić (Simplify [https://github.com/Simplify])

Mention with @flycheck/javascript.

Lua

	Gordon Gao (ghprince [https://github.com/ghprince])

Mention with @flycheck/lua.

Puppet

	Romanos Skiadas (rski [https://github.com/rski])

Mention with @flycheck/puppet.

Rust

	fmdkdd [https://github.com/fmdkdd]

	Michael Pankov (mkpankov [https://github.com/mkpankov])

Mention with @flycheck/rust.

TypeScript

	Saša Jovanić (Simplify [https://github.com/Simplify])

Mention with @flycheck/typescript.

Packagers

We would like to thank all people who package Flycheck on behalf of
distributions and support our development efforts with their feedback, their
patches and their testing:

	Sean Whitton (spwhitton [https://github.com/spwhitton]) and the Debian Emacs addon team [https://pkg-emacsen.alioth.debian.org/] (Debian
packages)

Acknowledgements

We would also like to thank the following people and projects:

	Sebastian Wiesner (lunaryorn [https://github.com/lunaryorn]) for creating Flycheck in the first place,
for taking the time and dedication to maintain it for over 4 years, while
maintaining high standards of code quality and nurturing an healthy, active
community around it, giving Flycheck the best chances to thrive after his
departure.

	Bozhidar Batsov (bbatsov [https://github.com/bbatsov]) for his valuable feedback and his constant
support and endorsement of Flycheck from the very beginning. Notably he added
Flycheck to his popular Prelude [https://github.com/bbatsov/prelude] project at a very
early stage and thus brought Flycheck to many new users.

	Magnar Sveen (magnars [https://github.com/magnars]) for his dash.el [https://github.com/magnars/dash.el] and
s.el [https://github.com/magnars/s.el] libraries, which support considerable parts of
Flycheck internals, and greatly helped to overcome Sebastian’s initial
aversion to Emacs Lisp.

	Martin Grenfell (scrooloose [https://github.com/scrooloose]) for the Vim syntax checking extension
Syntastic [https://github.com/vim-syntastic/syntastic] which saved Sebastian’s life back
when he was using Vim, and served as inspiration for Flycheck and many of its
syntax checkers.

	Matthias Güdemann (mgudemann [https://github.com/mgudemann]), for his invaluable work on
Flycheck’s

 Developer’s Guide

Developer’s Guide

So you want to extend Flycheck, but have no idea where to start? This guide
will give you an overview of Flycheck internals, and take you through adding a
syntax checker to Flycheck.

An overview of Flycheck internals

The goal of Flycheck is to display errors from external checker programs
directly in the buffer you are editing. Instead of you manually invoking
make or the compiler for your favorite language, Flycheck takes care of it
for you, collects the errors and displays them right there in the buffer.

How Flycheck works is rather straightforward. Whenever a syntax check is
started (see Check buffers), the following happens:

	First, Flycheck runs the external program as an asynchronous process using
start-process. While this process runs, Flycheck simply accumulates its
output.

	When the process exits, Flycheck parses its output in order to collect the
errors. The raw output is turned into a list of flycheck-error objects
containing, among others, the filename, line, column, message and severity of
the error.

	Flycheck then filters the collected errors to keep only the relevant ones.
For instance, errors directed at other files than the one you are editing are
discarded.

	Relevant errors are highlighted by Flycheck in the buffer, according to user
preference. By default, each error adds a mark in the fringe at the line it
occurs, and underlines the symbol at the position of the error using
overlays.

	Finally, Flycheck rebuilds the error list buffer.

Flycheck follows this process for all the many different syntax checkers that are provided by default.

Note

Specifically, the above describes the process of command checkers, i.e.,
checkers that run external programs. All the checkers defined in
flycheck-checkers are command checkers, but command checkers are actually
instances of generic checkers. See flycheck-ocaml [https://github.com/flycheck/flycheck-ocaml] for an example
of how to use a generic checker.

See also

	Asynchronous Processes(elisp) [http://www.gnu.org/software/emacs/manual/html_node/elisp/Asynchronous-Processes.html#Asynchronous-Processes]

	How to run and control asynchronous processes from inside Emacs.

	Overlays(elisp) [http://www.gnu.org/software/emacs/manual/html_node/elisp/Overlays.html#Overlays]

	How to add temporary annotations to a buffer.

Adding a syntax checker to Flycheck

To add a syntax checker to Flycheck, you need to answer a few questions:

	How to invoke the checker? What is the name of its program, and what
arguments should Flycheck pass to it?

	How to parse the error messages from the checker output?

	What language (or languages) will the checker be used for?

For instance, if I were to manually run the Scala compiler scalac on the
following hello.scala file:

object {
 println("Hello, world")
}

Here is the output I would get:

$ scalac hello.scala
hello.scala:1: error: identifier expected but '{' found.
object {
 ^
one error found

The compiler reports one syntax error from the file hello.scala, on line 3,
with severity error, and the rest of the line contains the error message.

So, if we want to instruct Flycheck to run scalac on our Scala files, we
need to tell Flycheck to:

	Invoke scalac FILE-NAME

	Get errors from output lines of the form: file-name:line: error:message

Writing the checker

Once you have answered these questions, you merely have to translate the answers
to Emacs Lisp. Here is the full definition of the scala checker you can
find in flycheck.el:

(flycheck-define-checker scala
 "A Scala syntax checker using the Scala compiler.

See URL `http://www.scala-lang.org/'."
 :command ("scalac" "-Ystop-after:parser" source)
 :error-patterns
 ((error line-start (file-name) ":" line ": error: " (message) line-end))
 :modes scala-mode
 :next-checkers ((warning . scala-scalastyle)))

The code is rather self-explanatory; but we’ll go through it nonetheless.

First, we define a checker using flycheck-define-checker. Its first argument,
scala, is the name of the checker, as a symbol. The name is used to refer
to the checker in the documentation, so it should usually be the name of the
language to check, or the name of the program used to do the checking, or a
combination of both. Here, scalac is the program, but the checker is named
scala. There is another Scala checker using scalastyle, with the name
scala-scalastyle. See flycheck-checkers for the full list of checker
names defined in Flycheck.

After the name comes the docstring. This is a documentation string answering
three questions: 1) What language is this checker for? 2) What is the program
used? 3) Where can users get this program? Nothing more. In particular, this
string does not include user documentation, which should rather go in the
manual (see Supported Languages).

The rest of the arguments are keyword arguments; their order does not matter,
but they are usually given in the fashion above.

	:command describes what command to run, and what arguments to pass. Here,
we tell Flycheck to run scalac -Ystop-after:parser on source. In
Flycheck, we usually want to get error feedback as fast as possible, hence we
will pass any flag that will speed up the invocation of a compiler, even at
the cost of missing out on some errors. Here, we are telling scalac to
stop after the parsing phase to ensure we are getting syntax errors quickly.

The source argument is special: it instructs Flycheck to create a
temporary file containing the content of the current buffer, and to pass that
temporary file as argument to scalac. That way, scalac can be run on
the content of the buffer, even when the buffer has not been saved. There are
other ways to pass the content of the buffer to the command, e.g., by piping
it through standard input. These special arguments are described in the
docstring of flycheck-substitute-argument.

	:error-patterns describes how to parse the output, using the rx regular
expression syntax. Here, we expect scalac to return error messages of the
form:

file:line: error: message

This is a common output format for compilers. With the following
:error-patterns value:

((error line-start (file-name) ":" line ": error: " (message) line-end))

we tell Flycheck to extract three parts from each line in the output that
matches the pattern: the file-name, the line number, and the
message content. These three parts are then used by Flycheck to create a
flycheck-error with the error severity.

	:modes is the list of Emacs major modes in which this checker can run.
Here, we want the checker to run only in scala-mode buffers.

That’s it! This definition alone contains everything Flycheck needs to run
scalac on a Scala buffer and parse its output in order to give error
feedback to the user.

Note

rx.el is a built-in Emacs module for declarative regular expressions.
Look for the documentation of the rx function inside Emacs for its usage.
Flycheck extends rx with a few constructs like line, file-name and
message. You can find them the full list in the docstring for
flycheck-rx-to-string.

Registering the checker

Usually, you’ll want to register the checker so that it is eligible for
automatic selection. For that, you just need to add the checker symbol to
flycheck-checkers. The order of checkers does matter, as only one checker can
be enabled in a buffer at a time. Usually you want to put the most useful
checker as the first checker for that mode. For instance, here are the
JavaScript checkers provided by Flycheck:

javascript-eslint
javascript-jshint
javascript-gjslint
javascript-jscs
javascript-standard

If a buffer is in js-mode, Flycheck will try first to enable
javascript-eslint before any other JavaScript checker.

There are other factors governing checker selection in a buffer, namely whether
a checker is disabled by user configuration (see
Disable syntax checkers), and whether this checker can be enabled
(see the :enabled property in flycheck-define-generic-checker).

See also

	flycheck-get-checker-for-buffer

	This is the function that looks through flycheck-checkers to find a
valid checker for the buffer.

A more complex example

Here is a slightly more complex checker:

(flycheck-define-checker protobuf-protoc
 "A protobuf syntax checker using the protoc compiler.

See URL `https://developers.google.com/protocol-buffers/'."
 :command ("protoc" "--error_format" "gcc"
 (eval (concat "--java_out=" (flycheck-temp-dir-system)))
 ;; Add the file directory of protobuf path to resolve import directives
 (eval (concat "--proto_path=" (file-name-directory (buffer-file-name))))
 source-inplace)
 :error-patterns
 ((info line-start (file-name) ":" line ":" column
 ": note: " (message) line-end)
 (error line-start (file-name) ":" line ":" column
 ": " (message) line-end)
 (error line-start
 (message "In file included from") " " (file-name) ":" line ":"
 column ":" line-end))
 :modes protobuf-mode
 :predicate (lambda () (buffer-file-name)))

The :command is longer, as the checker passes more flags to protoc.
Note the use of eval for transforming Flycheck checker options into flags
for the command. See the docstring for flycheck-substitute-argument for more
info, and look at other checkers for examples.

Note also that there are three patterns in :error-patterns; the first one
will catch notes from the compiler and turn them into flycheck-error
objects with the info severity; the second is for errors from the file being
checked, and the third one is for errors from other files.

There is a new :predicate property, that is used to determine when the
checker can be called. In addition to the :mode property which restricts
the checker to buffer in the protobuf-mode, this checker should be called
only when there is a file associated to the buffer. This is necessary since we
are passing the file associated to the buffer protobuf using
source-inplace in :command.

There are other useful properties, depending on your situation. :enabled is
like :predicate, but is run only once; it is used to make sure a checker has
everything it needs before being allowed to run in a buffer. :verify is
helpful for giving feedback to users. :error-parser replaces
:error-patterns and is for parsing checker output from machine-readable
formats like XML or JSON.

See also

	flycheck-define-generic-checker

	For the full documentation of all the properties you can pass to
flycheck-define-checker. Look also in the docstring for
flycheck-define-command-checker for additional properties.

Note

Don’t be afraid to look into the flycheck.el code. The existing checkers
serve as useful examples you can draw from, and most of core functions are
well documented.

Sharing your checker

Once you have written your own syntax checker, why not submit a pull request [https://github.com/flycheck/flycheck/pulls] to integrate it into Flycheck?
If it’s useful to you, it may be useful for someone else! Please do check out
our Contributor’s Guide to learn how we deal with pull requests.

 Contributor’s Guide

Contributor’s Guide

Thank you very much for your interest in contributing to Flycheck! We’d like to
warmly welcome you in the Flycheck community, and hope that you enjoy your time
with us!

There are many ways to contribute to Flycheck, and we appreciate all of them. We
hope that this document helps you to contribute. If you have questions, please
ask on our issue tracker [https://github.com/flycheck/flycheck/issues] or in our Gitter chatroom [https://gitter.im/flycheck/flycheck].

For a gentle start please take a look at all the things we need your help
with [https://github.com/flycheck/flycheck/issues?q=is%3Aissue+is%3Aopen+label%3A%22needs+help%22] and look for beginner-friendly tasks [https://github.com/flycheck/flycheck/labels/beginner%20friendly].

Please note that all contributors are expected to follow our Code of
Conduct.

Bug reports

Bugs are a sad reality in software, but we strive to have as few as possible in
Flycheck. Please liberally report any bugs you find. If you are not sure whether
something is a bug or not, please report anyway.

If you have the chance and time please search existing issues [https://github.com/flycheck/flycheck/issues?q=is%3Aissue], as it’s
possible that someone else already reported your issue. Of course, this doesn’t
always work, and sometimes it’s very hard to know what to search for, so this is
absolutely optional. We definitely don’t mind duplicates, please report
liberally.

To open an issue simply fill out the issue form [https://github.com/flycheck/flycheck/issues/new]. To help us fix the issue,
include as much information as possible. When in doubt, better include too much
than too little. Here’s a list of facts that are important:

	What you did, and what you expected to happen instead

	Whether and how you were able to reproduce the issue in emacs -Q [http://www.lunaryorn.com/posts/reproduce-bugs-in-emacs-Q.html]

	Your Flycheck setup from M-x flycheck-verify-setup

Windows-only issues

As Flycheck does not support Windows officially we generally do not attempt to
fix issues that only occur on Windows. We will move all Windows-only issues to
the list of open Windows issues [https://github.com/flycheck/flycheck/labels/windows%20only], and leave them to Windows users and
developers.

We welcome anyone who wants to fix open Windows issues, and we will merge pull
requests for improved Windows compatibility. If you know Windows and Emacs,
please take a look at the list of open Windows issues and try to fix any of
these.

Feature requests

To request a new feature please open a new issue through our issue form [https://github.com/flycheck/flycheck/issues/new].
A

 Style Guide

Style Guide

This document describes our code style. It tells you what to look for when
making changes to Flycheck, or when reviewing pull requests.

Features

Flycheck’s scope and focus is providing the infrastructure and foundations for
on-the-fly syntax checking. Flycheck provides the basics but deep integration
with particular programming languages is best left to separate packages.

Whether a feature is within the scope of Flycheck is the maintainer’s judgement call. Generally we reserve the right to
reject any pull request for being out of scope.

	Avoid a disproportionate amount of code for a single syntax checker or
language. Look at the built-in checkers for judgement. A syntax checker that
requires a lot more code than any built-in checker is likely to be rejected.

	Avoid deep integration with a particular UI or completion framework. Emacs’
standard is our standard: We will reject code that is tied to Helm or Counsel.

	Likewise do not deviate from Emacs’ default behaviour too much. Stick to
Emacs’ standard for key bindings, interactive functions, etc.

Style

Important

make check compile must pass on Emacs 25 or newer. This command checks
for some formatting issues and compilation errors.

Run make format with Emacs 25 to automatically reformat the Emacs Lisp
source files.

	Generally try to fit into the style of the code you see.

	Indent with the default indentation rules.

	Follow the Programming Tips(elisp) [http://www.gnu.org/software/emacs/manual/html_node/elisp/Programming-Tips.html#Programming-Tips] for Emacs Lisp.

	Whitespace:
	80 characters per line.

	Avoid tabs and trailing spaces.

	Naming:
	Prefix all variables and functions with the name of the containing library,
i.e. flycheck- for everything that is in flycheck.el.

	End boolean predicates with -p, i.e. flycheck-valid-checker-p.

	Avoid macros, and use them for syntax only.

	Adhere to the Key Binding Conventions(elisp) [http://www.gnu.org/software/emacs/manual/html_node/elisp/Key-Binding-Conventions.html#Key-Binding-Conventions]. Particularly do not
define keys in Emacs’ reserved keymaps or in the C-c LETTER space
for user bindings.

Libraries

	Do not advise built-in or 3rd party functions and commands.

	Do not redefine built-in or 3rd party functions, unless for compatibility,
but then copy the newer definition verbatim.

	Do not use with-eval-after-load and similar functions.

	Dependencies:
	Use built-in Emacs libraries freely.

	Introduce external dependencies with care. Prefer built-in
libraries. dash.el is fine, though.

	Avoid dependencies on language-specific libraries.

	Avoid cl-lib:
	Prefer seq over dash over cl-lib. Use list functions from
cl-lib only as the very last resort.

	Prefer let-alist and pcase over cl-destructuring-bind.

Tests

	Add comprehensive buttercup specs for new functions and commands to
test/specs/. Check whether the specs fit into an existing spec file,
or add a new file instead. In doubt, use a new file.

	For new syntax checkers add at least one syntax checker integration test to
test/flycheck-test.el. Make sure that the test passes with
make LANGUAGE=language integ.

Documentation

	Add docstrings to all functions and variables.

	Follow the Documentation Tips(elisp) [http://www.gnu.org/software/emacs/manual/html_node/elisp/Documentation-Tips.html#Documentation-Tips].

	Take care to update our manual:
	Document new interactive commands and user options in the user guide.

	Document new syntax checkers and new options for existing syntax checkers in
the list of languages.

	Document new or changed version requirements for syntax checkers in the
list of languages.

	Document changes to our build system and tooling in the contributor’s
guide or the maintainer’s guide.

Commits

	Make each commit self-contained.

	Squash trivial fixes into previous commits so that no commit in and by itself
violates this style guide.

	Write commit messages that adhere to the style illustrated below.

	In doubt prefer long messages over short messages. Take the time to write a
good message that explains the intention of the change and illustrates
noteworthy aspects of the implementation.

	If the commit fixes a bug try to reproduce a brief description of the bug in
the message and make sure to mention the corresponding GitHub issue
(e.g. Fixes GH-42).

Commit message style

This model commit message illustrates our style:

Fix a foo bug

The first line is the summary, 50 characters or less. Write in the
imperative and in present tense: “Fix bug”, not “fixed bug” or “fixes
bug”. Explain the intend of the change not the actual contents which the
diff already provides

After the summary more paragraphs with detailed explanations may follow,
wrapped at 72 characters. Separate multiple paragraphs by blank lines.

You may use simple formatting like *emphasis* or _underline_, but keep
it to a minimum. Commit messages are not in Markdown :)

Commit messages may reference issues by number, like this: See GH-42.
Please use `GH-` to prefix issue numbers. You may also close issues
like this: Fixes GH-42 and closes GH-42.

Git Commit [https://github.com/magit/magit/] and Magit [https://github.com/magit/magit/] provide Emacs mode for Git commit messages, which helps
you to comply to these guidelines.

See also

	A Note About Git Commit Messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html]

	Further information about good commit messages, including some motivation
for our rules for commit messages.

 Maintainer’s Guide

Maintainer’s Guide

Issue triage

Please label incoming tickets accordingly according to these rules:

	Add the “bug” label to things that you think must be fixed urgently.
Please don’t use this label for bugs that do not severely impede Flycheck’s
functionality.

	Add the “needs review” label to new bugs and pull requests that need to be
reviewed.

	Add the “beginner friendly” label to really easy things. If you add this
label please also add a comment that outlines a possible solution.

	Add “blocked” to bugs that need further comment or help from the reporter, and
to pull requests that need to be improved.

	Add “needs help” to anything that no contributor will work on, to mark the
issue as available for external contributors and inform users that we will not
work on the issue.

	Add “windows only” for bugs that appear to only affect Windows operating
systems.

If you’d like to review a bug or pull request please assign the corresponding
ticket to you.

In issues for specific languages that Flycheck support please mention the
corresponding language team if one exists.

Git workflow

Our Git workflow is simple:

	The master branch is always shippable.

	Every feature and every non-trivial change goes through a pull request.

GitHub calls this the “GitHub Flow” and has a very nice visual guide [https://guides.github.com/introduction/flow/] for this
model.

Branch rules

Our workflow implies a couple of rules about which branches to push code to:

	Please commit new features, larger changes and refactorings and updates to
documentation to separate branches and open a pull request for review and
discussion.

	The master branch is protected. Only owners
can push directly to it. Everyone else needs to open a pull request. Github
requires maintainer approval and passing Travis CI tests before a pull request
can be merged to master.

Important

When creating a new branch please use a descriptive name to communicate the
purpose of the branch to other developers and maintainers. fix-bug-42 is
not a great name, but 42-fix-void-function-error-in-error-list is.

Pull requests reviews

We review all pull requests, and require two different kinds of approval:

	At least one maintainer must approve the idea and direction with a LGTM
comment.

	At least one contributor (maintainer or otherwise) must approve the
implementation by leaving an approved pull request review [https://help.github.com/articles/about-pull-request-reviews/], and no
contributors must have requested changes.

As a maintainer

	Consider whether you personally think that the change is a good addition to
Flycheck.

	Weight the expected benefits and impact of the feature against the
expected complexity.

	Check whether the pull request complies with our style guide, but don’t go too much into technical details.

	Don’t review for technical details. It’s the idea and direction that counts.

If you would like to see the pull request in Flycheck leave a LGTM comment.

As a contributor

	Check the technical implementation.

	Consider the impact on syntax checking for a language.

	Check whether the tests pass.

	Check whether the PR complies with our style guide.

	Challenge the technical implementation of a pull request, and ask questions
about dubious code.

	Consider whether there might be a simpler approach or a better solution to the
problem that the PR solves.

If you find any issues please leave a pull request review [https://help.github.com/articles/about-pull-request-reviews/] that requests
for changes. Please try to leave an inline comment wherever possible and try to
suggest a better solution, to make it easy for the PR author to discover and fix
the issues.

If you didn’t find any issues leave a pull request review [https://help.github.com/articles/about-pull-request-reviews/] that approves the
changes.

In doubt request changes first and let the PR author explain their intention and
implementation. You can still approve the review afterwards if you are
satisfied.

Merge guidelines

Any contributor may merge approved pull requests. Our protection rules for the
master branch ensure that only approved pull requests can be merged, but you
still have to check a few things before merging:

	Are commits squashed? Before merging please take an extra look at the commits
to make sure that the commits were properly squashed and have good commit
messages. If needed, ask the contributor to improve the commit messages and
squash the commits first, by requesting changes with a pull request review.

	Does the PR pass the integration tests? We don’t run integration tests
automatically, so contributors should make sure to run them on their side.

	Should the PR warrant a line in the changelog? User-facing changes should be
documented in CHANGES.rst.

For new features:

	Does the PR include tests? A new syntax checker should have at least one
accompanying integration test.

	Does the PR include documentation? New syntax checkers or options should be
documented in Supported Languages.

If all the points above have been addressed, then go ahead and click that green
button :)

Note

We require proper merges for pull requests, to preserve the fact that a
change came from a pull request in the git history and to retain any commit
signatures that may exist. As such you can’t squash-merge or rebase-merge
through GitHub’s UI.

Signatures for commits and tags

We sign all release tags as part of our Release process. Thus
you need a GPG key pair for Git. Github provides a great guide which helps you
to generate a key [https://help.github.com/articles/generating-a-gpg-key/] and to tell Git about your key [https://help.github.com/articles/telling-git-about-your-gpg-key/]. Please also add your
key [https://help.github.com/articles/adding-a-new-gpg-key-to-your-github-account/] to your Github account.

We also recommend that you sign all your commits with your key. Again, Github
provides a good guide to sign commits [https://help.github.com/articles/signing-commits-using-gpg/].

See also

	Signing Your Work [https://git-scm.com/book/uz/v2/Git-Tools-Signing-Your-Work]

	For more information about signing commits and tags take a look at the
section in the Git manual.

Tooling and Services

In addition to Github [https://github.com/flycheck] where we host code and do code reviews we use a bit of
extra tooling and some 3rd party services for Flycheck:

	ReadTheDocs [https://readthedocs.org/projects/flycheck/] hosts http://www.flycheck.org and automatically rebuilds it on
every change. It works mostly automatically and requires little
configuration.

	Travis CI [https://travis-ci.org/flycheck/flycheck] runs our tests after every push and for every pull request.
It’s configured through .travis.yml.

	CLA assistant [https://cla-assistant.io] checks signatures to our CLA [https://gist.github.com/lunaryorn/c9c0d656fe7e704da2f734779242ec99] and allows contributors to sign
the CLA through their Github account.

All maintainers have administrative access to
these services so in case of an issue just contact them.

Maintenance scripts

Administrative processes are tedious and time-consuming, so we try to automate
as much as possible. The maint/ directory contains many scripts for
this purpose. make -C maint/ help provides an overview over all
administrative tasks.

Most of these scripts require Python 3.5 and additional Python libraries. On OS
X it is recommended that you use Homebrew [https://brew.sh] to install the latest Python version
with brew install python3. On Linux you should be able to obtain Python 3.5
from the package manager of your distribution.

To install all required libraries run make -C maint init. We recommend that
you use virtualenv [https://virtualenv.pypa.io/en/latest/] to avoid a global installation of Python modules. make
init will warn you if you do not.

Versioning and releases

We use a single continuously increasing version number for Flycheck.

Important

Breaking changes may occur at any point.

Please feel free to make a release whenever you think it’s

 Supported Languages

Supported Languages

This document lists all programming and markup languages which Flycheck
supports.

Note

Extensions may provide support for additional languages or add deeper
integration with existing languages.

Take a look at the list of extensions to see
what the community can offer to you.

Each language has one or more syntax checkers whose names follow a convention of
language-tool. All syntax checkers are listed in the order they
would be applied to a buffer, with all available options. For more information
about a syntax checker open Emacs and use flycheck-describe-checker
to view the docstring of the syntax checker. Likewise, you may use
describe-variable to read the complete docstring of any option.

Ada

	
ada-gnat

	Check ADA syntax and types with GNAT [http://libre.adacore.com/tools/gnat-gpl-edition].

	
defcustom flycheck-gnat-args

	A list of additional options.

	
defcustom flycheck-gnat-include-path

	A list of include directories. Relative paths are relative to the path
of the buffer being checked.

	
defcustom flycheck-gnat-language-standard

	The language standard to use as string.

	
defcustom flycheck-gnat-warnings

	A list of additional warnings to enable. Each item is the name of a
warning category to enable.

AsciiDoc

	
asciidoctor

	Check AsciiDoc with the default Asciidoctor [http://asciidoctor.org] backend.

	
asciidoc

	Check AsciiDoc [http://www.methods.co.nz/asciidoc] with the standard AsciiDoc processor.

C/C++

Flycheck checks C and C++ with either c/c++-clang or c/c++-gcc, and then
with c/c++-cppcheck.

	
c/c++-clang

	
c/c++-gcc

	Check C/C++ for syntax and type errors with Clang [http://clang.llvm.org/] or GCC [https://gcc.gnu.org/] respectively.

Note

c/c++-gcc requires GCC 4.4 or newer.

	
defcustom flycheck-clang-args

	
defcustom flycheck-gcc-args

	A list of additional arguments for c/c++-clang and c/c++-gcc
respectively.

	
defcustom flycheck-clang-blocks

	Whether to enable blocks in c/c++-clang.

	
defcustom flycheck-clang-definitions

	
defcustom flycheck-gcc-definitions

	A list of additional preprocessor definitions for c/c++-clang and
c/c++-gcc respectively.

	
defcustom flycheck-clang-include-path

	
defcustom flycheck-gcc-include-path

	A list of include directories for c/c++-clang and c/c++-gcc
respectively, relative to the file being checked.

	
defcustom flycheck-clang-includes

	
defcustom flycheck-gcc-includes

	A list of additional include files for c/c++-clang and c/c++-gcc
respectively, relative to the file being checked.

	
defcustom flycheck-clang-language-standard

	
defcustom flycheck-gcc-language-standard

	The language standard to use in c/c++-clang and c/c++-gcc
respectively as string, via the -std option.

	
defcustom flycheck-clang-ms-extensions

	Whether to enable Microsoft extensions to C/C++ in c/c++-clang.

	
defcustom flycheck-clang-no-exceptions

	
defcustom flycheck-gcc-no-exceptions

	Whether to disable exceptions in c/c++-clang and
c/c++-gcc respectively.

	
defcustom flycheck-clang-no-rtti

	
defcustom flycheck-gcc-no-rtti

	Whether to disable RTTI in c/c++-clang and c/c++-gcc respectively,
via -fno-rtti.

	
defcustom flycheck-clang-standard-library

	The name of the standard library to use for c/c++-clang, as string.

	
defcustom flycheck-gcc-openmp

	Whether to enable OpenMP in c/c++-gcc.

	
defcustom flycheck-clang-pedantic

	
defcustom flycheck-gcc-pedantic

	Whether to warn about language extensions in c/c++-clang and
c/c++-gcc respectively.

	
defcustom flycheck-clang-pedantic-errors

	
defcustom flycheck-gcc-pedantic-errors

	Whether to error on language extensions in c/c++-clang and
c/c++-gcc respectively.

	
defcustom flycheck-clang-warnings

	
defcustom flycheck-gcc-warnings

	A list of additional warnings to enable in c/c++-clang and
c/c++-gcc respectively. Each item is the name of a warning or
warning category for -W.

	
c/c++-cppcheck

	Check C/C++ for semantic and stylistic issues with cppcheck [http://cppcheck.sourceforge.net/].

	
defcustom flycheck-cppcheck-checks

	A list of enabled checks. Each item is the name of a check for the
--enable option.

	
defcustom flycheck-cppcheck-inconclusive

	Whether to enable inconclusive checks. These checks may yield more
false positives than normal checks.

Note

This option requires cppcheck 1.54 or newer.

	
defcustom flycheck-cppcheck-include-path

	A list of include directories. Relative paths are relative to the file
being checked.

	
defcustom flycheck-cppcheck-standards

	The C, C++ and/or POSIX standards to use via one or more --std=
arguments.

	
defcustom flycheck-cppcheck-suppressions

	The cppcheck suppressions list to use via one or more --suppress=
arguments.

CFEngine

	
cfengine

	Check syntax with CFEngine [https://cfengine.com/].

Chef

	
chef-foodcritic

	Check style in Chef recipes with foodcritic [http://www.foodcritic.io].

	
defcustom flycheck-foodcritic-tags

	A list of tags to select.

Coffeescript

Flycheck checks Coffeescript syntax with coffee and then lints with
coffee-coffeelint.

	
coffee

	Check syntax with the Coffeescript [http://coffeescript.org/] compiler.

	
coffee-coffeelint

	Lint with Coffeelint [http://www.coffeelint.org/].

	
defcustom flycheck-coffeelintrc

	Configuration file for this syntax checker. See
Configuration files.

Coq

	
coq

	Check and proof with the standard Coq [https://coq.inria.fr/] compiler.

CSS

	
css-csslint

	Check syntax and style with CSSLint [https://github.com/CSSLint/csslint].

	
css-stylelint

	Syntax-check and lint CSS with stylelint [https://stylelint.io].

	
defcustom flycheck-stylelintrc

	Configuration file for this syntax checker. See
Configuration files.

	
defcustom flycheck-stylelint-quiet

	Whether to run stylelint in quiet mode via --quiet.

D

	
d-dmd

	Check syntax and types with (DMD [http://dlang.org/]).

Note

This syntax checker requires DMD 2.066 or newer.

	
defcustom flycheck-dmd-include-path

	A list of include directories.

	
defcustom flycheck-dmd-args

	A list of additional arguments.

See also

	flycheck-d-unittest [https://github.com/flycheck/flycheck-d-unittest]

	Flycheck extension which provides a syntax checker to run D unittests
on the fly and report the results with Flycheck.

Dockerfile

	
dockerfile-hadolint

	Check syntax and code style with hadolint [http://hadolint.lukasmartinelli.ch/]

Elixir

	
elixir-dogma

	Check syntax and code style with Dogma [https://github.com/lpil/dogma].

Emacs Lisp

Flycheck checks Emacs Lisp with emacs-lisp and then with
emacs-lisp-checkdoc.

	
emacs-lisp

	Check syntax with the built-in byte compiler.

	
defcustom flycheck-emacs-lisp-load-path

	The load path as list of strings. Relative directories are expanded
against the default-directory of the buffer being checked.

	
defcustom flycheck-emacs-lisp-initialize-packages

	Whether to initialize Emacs’ package manager with package-initialize
before checking the buffer. If set to auto (the default),
only initialize the package managers when checking files under
user-emacs-directory.

	
defcustom flycheck-emacs-lisp-package-user-dir

	The package directory as string. Has no effect if
flycheck-emacs-lisp-initialize-packages is nil.

	
defcustom flycheck-emacs-lisp-check-declare

	If non-nil, also check declare-function forms using
check-declare-file.

	
emacs-lisp-checkdoc

	Check Emacs Lisp documentation conventions with checkdoc.

See also

	Documentation Tips(elisp) [http://www.gnu.org/software/emacs/manual/html_node/elisp/Documentation-Tips.html#Documentation-Tips]

	Information about documentation conventions for Emacs Lisp.

	purcell/flycheck-package [https://github.com/purcell/flycheck-package]

	Flycheck extension which adds a syntax checker to check for violation
of Emacs Lisp library headers and packaging conventions.

	Library Headers(elisp) [http://www.gnu.org/software/emacs/manual/html_node/elisp/Library-Headers.html#Library-Headers]

	Information about library headers for Emacs Lisp files.

Erlang

Flycheck checks Erlang with erlang-rebar3 in rebar projects and
erlang otherwise.

	
erlang

	Check Erlang with the standard Erlang [http://www.erlang.org/]
compiler.

	
defcustom flycheck-erlang-include-path

	A list of include directories.

	
defcustom flycheck-erlang-library-path

	A list of library directories.

	
erlang-rebar3

	Check Erlang with the rebar3 [https://www.rebar3.org/] build tool.

ERuby

	
eruby-erubis

	Check ERuby with erubis [http://www.kuwata-lab.com/erubis/].

Fortran

	
fortran-gfortran

	Check Fortran syntax and type with GFortran [https://gcc.gnu.org/onlinedocs/gfortran/].

	
defcustom flycheck-gfortran-args

	A list of additional arguments.

	
defcustom flycheck-gfortran-include-path

	A list of include directories. Relative paths are relative to the file
being checked.

	
defcustom flycheck-gfortran-language-standard

	The language standard to use via the -std option.

	
defcustom flycheck-gfortran-layout

	The source code layout to use. Set to free or fixed
for free or fixed layout respectively, or nil (the default) to let
GFortran automatically determine the layout.

	
defcustom flycheck-gfortran-warnings

	A list of warnings enabled via the -W option.

Go

Flycheck checks Go with the following checkers:

	go-gofmt

	go-golint

	go-vet

	go-build or go-test

	go-errcheck

	go-unconvert

	go-megacheck

	
go-gofmt

	Check Go syntax with gofmt [https://golang.org/cmd/gofmt/].

	
go-golint

	Check Go code style with Golint [https://github.com/golang/lint].

	
go-vet

	Check Go for suspicious code with vet [https://golang.org/cmd/vet/].

	
defcustom flycheck-go-vet-print-functions

	A list of print-like functions to check calls for format string problems.

	
defcustom flycheck-go-vet-shadow

	Whether to check for shadowed variables, in Go 1.6 or newer.

	
defcustom flycheck-go-build-tags

	A list of build tags.

	
go-build

	Check syntax and type with the Go compiler [https://golang.org/cmd/go].

Note

This syntax checker requires Go 1.6 or newer.

	
defcustom flycheck-go-build-install-deps

	Whether to install dependencies while checking with go-build or
go-test

	
defcustom flycheck-go-build-tags

	See flycheck-go-build-tags

	
go-test

	Check syntax and types of Go tests with the Go compiler [https://golang.org/cmd/go].

Note

This syntax checker requires Go 1.6 or newer.

	
defcustom flycheck-go-build-install-deps

	See flycheck-go-build-install-deps.

	
defcustom flycheck-go-build-tags

	See flycheck-go-build-tags

	
go-errcheck

	Check for unhandled error returns in Go with errcheck [https://github.com/kisielk/errcheck].

Note

This syntax checker requires errcheck build from commit 8515d34 (Aug
28th, 2015) or newer.

	
defcustom flycheck-go-build-tags

	See flycheck-go-build-tags

	
go-unconvert

	Check for unnecessary type conversions with unconvert [https://github.com/mdempsky/unconvert].

	
go-megacheck

	Lint code with megacheck [https://github.com/dominikh/go-tools].

	
defcustom flycheck-go-megacheck-disabled-checkers

	A list of checkers to disable when running megacheck [https://github.com/dominikh/go-tools].

Groovy

	
groovy

	Check syntax using the Groovy [http://www.groovy-lang.org/] compiler.

Haml

	
haml

	Check syntax with the Haml [http://haml.info/] compiler.

Handlebars

	
handlebars

	Check syntax with the Handlebars [http://handlebarsjs.com/] compiler.

Haskell

Flycheck checks Haskell with haskell-stack-ghc (in Stack projects) or
haskell-ghc, and then with haskell-hlint.

See also

	flycheck-haskell [https://github.com/flycheck/flycheck-haskell]

	Flycheck extension to configure Flycheck’s Haskell checkers from the
metadata, with support for Cabal sandboxes.

	flycheck-hdevtools [https://github.com/flycheck/flycheck-hdevtools]

	Flycheck extension which adds an alternative syntax checker for GHC
using hdevtools [https://github.com/bitc/hdevtools/].

	
haskell-stack-ghc

	
haskell-ghc

	Check syntax and type GHC [https://www.haskell.org/ghc/]. In Stack [https://github.com/commercialhaskell/stack] projects invoke GHC through Stack
to bring package dependencies from Stack in.

	
defcustom flycheck-ghc-args

	A list of additional arguments.

	
defcustom flycheck-ghc-no-user-package-database

	Whether to disable the user package database (only for haskell-ghc).

	
defcustom flycheck-ghc-stack-use-nix

	Whether to enable Nix support for Stack (only for haskell-stack-ghc).

	
defcustom flycheck-ghc-package-databases

	A list of additional package databases for GHC (only for
haskell-ghc). Each item points to a directory containing a package
directory, via -package-db.

	
defcustom flycheck-ghc-search-path

	A list of module directories, via -i.

	
defcustom flycheck-ghc-language-extensions

	A list of language extensions, via -X.

	
haskell-hlint

	Lint with hlint [https://github.com/ndmitchell/hlint].

	
defcustom flycheck-hlint-args

	A list of additional arguments.

	
defcustom flycheck-hlint-language-extensions

	A list of language extensions to enable.

	
defcustom flycheck-hlint-ignore-rules

	A list of rules to ignore.

	
defcustom flycheck-hlint-hint-packages

	A list of additional hint packages to include.

	
defcustom flycheck-hlintrc

	Configuration file for this syntax checker. See
Configuration files.

HTML

	
html-tidy

	Check HTML syntax and style with Tidy HTML5 [https://github.com/htacg/tidy-html5].

	
defcustom flycheck-tidyrc

	Configuration file for this syntax checker. See
Configuration files.

Javascript

Flycheck checks Javascript with one of javascript-eslint or
javascript-jshint, and then with javascript-jscs.

Alternatively javascript-standard is used instead all of the former ones.

	
javascript-eslint

	Check syntax and lint with ESLint [http://eslint.org/].

Note

Flycheck automatically disables
this syntax checker if eslint cannot find a valid configuration file
for the current buffer.

	
defcustom flycheck-eslint-rules-directories

	A list of directories with custom rules.

	
javascript-jshint

	Check syntax and lint with JSHint [http://jshint.com/].

	
defcustom flycheck-jshint-extract-javascript

	Whether to extract Javascript from HTML before linting.

	
defcustom flycheck-jshintrc

	Configuration file for this syntax checker. See
Configuration files.

	
javascript-jscs

	Check code style with JSCS [http://jscs.info/].

	
defcustom flycheck-jscsrc

	Configuration file for this syntax checker. See
Configuration files.

	
javascript-standard

	Check syntax and code style with Standard [https://github.com/feross/standard] or Semistandard [https://github.com/Flet/semistandard].

JSON

Flycheck checks JSON with json-jsonlint or json-python-json.

	
json-jsonlint

	Check JSON with jsonlint [https://github.com/zaach/jsonlint].

	
json-python-json

	Check JSON with Python’s built-in json [https://docs.python.org/3.5/library/json.html#module-json] module.

Less

	
less

	Check syntax with the Less [http://lesscss.org/] compiler.

Note

This syntax checker requires lessc 1.4 or newer.

	
less-stylelint

	Syntax-check and lint Less with stylelint [https://stylelint.io].

	
defcustom flycheck-stylelintrc

	Configuration file for this syntax checker. See
Configuration files.

	
defcustom flycheck-stylelint-quiet

	Whether to run stylelint in quiet mode via --quiet.

LLVM

	
llvm-llc

	Check syntax with llc [http://llvm.org/docs/CommandGuide/llc.html].

Lua

Flycheck checks Lua with lua-luacheck, falling back to lua.

	
lua-luacheck

	Check syntax and lint with Luacheck [https://github.com/mpeterv/luacheck].

	
defcustom flycheck-luacheckrc

	Configuration file for this syntax checker. See
Configuration files.

	
defcustom flycheck-luacheck-standards

	The luacheck standards to use via one or more --std arguments.

	
lua

	Check syntax with the Lua compiler [http://www.lua.org/].

Markdown

	
markdown-mdl

	Check Markdown with markdownlint [https://github.com/mivok/markdownlint/].

	
defcustom flycheck-markdown-mdl-rules

	A list of enabled rules.

	
defcustom flycheck-markdown-mdl-tags

	A list of enabled rule tags.

	
defcustom flycheck-markdown-mdl-style

	Configuration file for this syntax checker. See
Configuration files.

Nix

	
nix

	Check Nix with nix-instantiate [https://nixos.org/nix/manual/#sec-nix-instantiate].

Perl

Flycheck checks Perl with perl and perl-perlcritic.

	
perl

	Check syntax with the Perl [https://www.perl.org/] interpreter.

	
defcustom flycheck-perl-include-path

	A list of include directories, relative to the file being checked.

	
perl-perlcritic

	Lint and check style with Perl::Critic [https://metacpan.org/pod/Perl::Critic].

	
defcustom flycheck-perlcritic-severity

	The severity level as integer for the --severity.

	
defcustom flycheck-perlcriticrc

	Configuration file for this syntax checker. See
Configuration files.

PHP

Flycheck checks PHP with php, php-phpmd and php-phpcs.

	
php

	Check syntax with PHP CLI [http://php.net/manual/en/features.commandline.php]

	
php-phpmd

	Lint with PHP Mess Detector [https://phpmd.org/].

	
defcustom flycheck-phpmd-rulesets

	A list of rule sets. Each item is either the name of a default rule
set, or the path to a custom rule set file.

	
php-phpcs

	Check style with PHP Code Sniffer [http://pear.php.net/package/PHP_CodeSniffer].

Note

This syntax checker requires PHP Code Sniffer 2.6 or newer.

	
defcustom flycheck-phpcs-standard

	The coding standard, either as name of a built-in standard, or as path
to a standard specification.

Processing

	
processing

	Check syntax using the Processing [https://processing.org/] compiler.

Protobuf

	
protobuf-protoc

	Check syntax using the protoc [https://developers.google.com/protocol-buffers/] compiler.

Pug

	
pug

	Check syntax using the Pug [https://www.pugjs.org] compiler.

Puppet

Flycheck checks Puppet with puppet-parser and lints with puppet-lint.

	
puppet-parser

	Check syntax with the Puppet [https://puppet.com/] compiler.

	
puppet-lint

	Link with Puppet Lint [http://puppet-lint.com/].

	
defcustom flycheck-puppet-lint-disabled-checks

	A list of checks to disable.

	
defcustom flycheck-puppet-lint-rc

	Configuration file for this syntax checker. See
Configuration files.

Python

Flycheck checks Python with python-flake8 or python-pylint, and falls
back to python-pycompile if neither of those is available.

See also

	flycheck-pyflakes [https://github.com/Wilfred/flycheck-pyflakes]

	Flycheck extension which adds a syntax checker using Pyflakes [https://github.com/PyCQA/pyflakes].

	msherry/flycheck-pycheckers [https://github.com/msherry/flycheck-pycheckers]

	Flycheck extension which can use multiple checkers simultaneously –
including pyflakes, pep8, flake8, pylint, and mypy 2/3.

	
python-flake8

	Check syntax and lint with flake8 [https://flake8.readthedocs.io/].

Note

This syntax checker requires flake8 3.0 or newer.

	
defcustom flycheck-flake8-error-level-alist

	An alist mapping Flake8 error IDs to Flycheck error levels.

	
defcustom flycheck-flake8-maximum-complexity

	The maximum McCabe complexity allowed for methods.

	
defcustom flycheck-flake8-maximum-line-length

	The maximum length of lines.

	
defcustom flycheck-flake8rc

	Configuration file for this syntax checker. See
Configuration files.

	
python-pylint

	Check syntax and lint with Pylint [https://pylint.org/].

Note

This syntax checker requires Pylint 1.0 or newer.

	
defcustom flycheck-pylint-use-symbolic-id

	Whether to report symbolic (e.g. no-name-in-module) or numeric
(e.g. E0611) message identifiers.

	
defcustom flycheck-pylintrc

	Configuration file for this syntax checker. See
Configuration files.

	
python-pycompile

	Check syntax with Python’s byte compiler (see py_compile [https://docs.python.org/3.5/library/py_compile.html#module-py_compile]).

R

	
r-lintr

	Check syntax and lint with lintr [https://github.com/jimhester/lintr].

	
defcustom flycheck-lintr-caching

	Whether to enable caching in lintr. On by default; it is not
recommended to disable caching unless it causes actual problems.

	
defcustom flycheck-lintr-linters

	Linters to use as a string with an R expression which selects the
linters to use.

Racket

	
racket

	Check syntax with raco expand [http://docs.racket-lang.org/raco/expand.html] from the compiler-lib package.

Note

This syntax checker needs the compiler-lib package.

RPM Spec

	
rpm-rpmlint

	Lint with rpmlint [https://sourceforge.net/projects/rpmlint/].

reStructuredText

Flycheck checks reStructuredText with rst-sphinx in Sphinx [http://sphinx-doc.org/] projects and
with rst otherwise.

	
rst-sphinx

	Check documents with Sphinx [http://sphinx-doc.org/].

Note

This syntax checker requires Sphinx 1.2 or newer.

	
defcustom flycheck-sphinx-warn-on-missing-references

	Whether to emit warnings for all missing references.

	
rst

	Check documents with docutils [http://docutils.sourceforge.net/].

Ruby

Flycheck checks Ruby with ruby-rubocop, ruby-reek and ruby-rubylint,
falling back to ruby or ruby-jruby for basic syntax checking if those
are not available.

	
ruby-rubocop

	Check syntax and lint with RuboCop [http://batsov.com/rubocop/].

Note

This syntax checker requires Rubocop 0.34 or newer.

	
defcustom flycheck-rubocop-lint-only

	Whether to suppress warnings about style issues, via the --lint
option.

	
defcustom flycheck-rubocoprc

	Configuration file for this syntax checker. See
Configuration files.

	
ruby-reek

	Check syntax and lint with reek [https://github.com/troessner/reek].

	
defcustom flycheck-reekrc

	Configuration file for this syntax checker. See
Configuration files.

Note

flycheck-reekrc defaults to nil, because Reek can find its own
configuration.

	
ruby-rubylint

	Check syntax and lint with ruby-lint [http://code.yorickpeterse.com/ruby-lint/latest/].

Note

This syntax checker requires ruby-lint 2.0.2 or newer.

	
defcustom flycheck-rubylintrc

	Configuration file for this syntax checker. See
Configuration files.

	
ruby

	Check syntax with the Ruby [https://www.ruby-lang.org/] interpreter.

	
ruby-jruby

	Check syntax with the JRuby [http://jruby.org/] interpreter.

Rust

Flycheck checks Rust [https://www.rust-lang.org/] with rust-cargo in Cargo projects, or rust
otherwise.

	
rust-cargo

	
rust

	Check syntax and types with the Rust [https://www.rust-lang.org/] compiler. In a Cargo [http://doc.crates.io/index.html] project the
compiler is invoked through cargo rustc to take Cargo dependencies
into account.

Note

rust-cargo requires Rust 1.15 or newer.
rust requires Rust 1.7 or newer.

See also

	flycheck-rust [https://github.com/flycheck/flycheck-rust]

	Flycheck extension to configure Rust syntax checkers according to
the current Cargo [http://doc.crates.io/index.html] project.

	
defcustom flycheck-rust-args

	A list of additional arguments that are passed to rustc.

	
defcustom flycheck-cargo-rustc-args

	A list of additional arguments passed to the cargo rustc subcommand

	
defcustom flycheck-rust-check-tests

	Whether to check test code in Rust.

	
defcustom flycheck-rust-crate-root

	A path to the crate root for the current buffer, or nil if the current
buffer is a crate by itself.

rust-cargo ignores this option as the crate root is given by Cargo.

	
defcustom flycheck-rust-crate-type

	For rust-cargo, the target type as a string, one of lib, bin,
example, test or bench. Can also be nil for projects with
a single target.

For rust, the type of the crate to check, as a string for the
--crate-type option.

	
defcustom flycheck-rust-binary-name

	The name of the binary to pass to cargo rustc --TARGET-TYPE, as a
string.

For rust-cargo, always required unless flycheck-rust-crate-type is
lib or nil, in which case it is ignored.

Ignored by rust.

	
defcustom flycheck-rust-library-path

	A list of additional library directories. Relative paths are relative
to the buffer being checked.

Sass/SCSS

Flycheck checks SASS with sass/scss-sass-lint, falling back to sass, and
SCSS with scss-lint or scss-stylelint falling back to
sass/scss-sass-lint first and then scss if neither is available.

	
scss-lint

	Syntax-check and lint SCSS with SCSS-Lint [https://github.com/brigade/scss-lint].

Note

This syntax checker requires SCSS-Lint 0.43.2 or newer.

	
defcustom flycheck-scss-lintrc

	Configuration file for this syntax checker. See
Configuration files.

	
sass/scss-sass-lint

	Syntax-check and lint Sass/SCSS with SASS-Lint [https://github.com/sasstools/sass-lint].

	
defcustom flycheck-sass-lintrc

	Configuration file for this syntax checker. See
Configuration files.

	
scss-stylelint

	Syntax-check and lint SCSS with stylelint [https://stylelint.io].

	
defcustom flycheck-stylelintrc

	Configuration file for this syntax checker. See
Configuration files.

	
defcustom flycheck-stylelint-quiet

	Whether to run stylelint in quiet mode via --quiet.

	
sass

	
scss

	Check SASS and SCSS respectively with the SCSS compiler [http://sass-lang.com/].

	
defcustom flycheck-sass-compass

	
defcustom flycheck-scss-compass

	Whether to enable the Compass CSS framework with --compass.

Scala

Flycheck checks Scala with scala and scala-scalastyle.

	
scala

	Check syntax and types with the Scala [http://www.scala-lang.org/]
compiler.

Note

This syntax checker is fairly primitive. For a better Scala experience
we recommend Ensime [http://ensime.org/].

	
scala-scalastyle

	Check style with Scalastyle [http://www.scalastyle.org/].

	
defcustom flycheck-scalastylerc

	Configuration file for this syntax checker. See
Configuration files.

Important

A configuration file is mandatory for this syntax checker. If
flycheck-scalastylerc is not set or the configuration file not found
this syntax checker will not be applied.

Scheme

Flycheck checks CHICKEN Scheme files with csc.

	
scheme-chicken

	Check syntax with csc, the CHICKEN Scheme [http://call-cc.org/]
compiler.

Important

Geiser [http://www.nongnu.org/geiser/] must be installed and active for
this checker to work.

Shell scripting languages

Flycheck checks various shell scripting languages:

	Bash with sh-bash and sh-shellcheck

	POSIX shell (i.e. /bin/sh) with sh-posix-dash or sh-posix-bash

	Zsh with sh-zsh

	
sh-bash

	Check Bash [http://www.gnu.org/software/bash/] syntax.

	
sh-posix-dash

	Check POSIX shell syntax with Dash [http://gondor.apana.org.au/~herbert/dash/].

	
sh-posix-bash

	Check POSIX shell syntax with Bash [http://www.gnu.org/software/bash/].

	
sh-zsh

	Check Zsh [http://www.zsh.org/] syntax.

	
sh-shellcheck

	Lint Bash and POSIX shell with ShellCheck [https://github.com/koalaman/shellcheck/].

	
defcustom flycheck-shellcheck-excluded-warnings

	A list of excluded warnings.

	
defcustom flycheck-shellcheck-follow-sources

	Allow shellcheck to read sourced files.

Slim

	
slim

	Check Slim using the Slim [http://slim-lang.com/] compiler.

	
slim-lint

	Check Slim best practices using the slim-lint [https://github.com/sds/slim-lint] linter.

SQL

	
sql-sqlint

	Check SQL syntax with Sqlint [https://github.com/purcell/sqlint].

systemd Unit Configuration

	
systemd-analyze

	Check systemd unit configuration file syntax with systemd-analyze [https://www.freedesktop.org/software/systemd/man/systemd-analyze.html].

Text

	
proselint

	Check text prose with Proselint [http://proselint.com/].

TeX/LaTeX

Flycheck checks TeX and LaTeX with either tex-chktex or tex-lacheck.

	
tex-chktex

	Check style with ChkTeX [http://www.nongnu.org/chktex/].

	
defcustom flycheck-chktexrc

	Configuration file for this syntax checker. See
Configuration files.

	
tex-lacheck

	Check style with Lacheck [http://www.ctan.org/pkg/lacheck].

Texinfo

	
texinfo

	Check syntax with makeinfo from Texinfo [http://www.gnu.org/software/texinfo/].

TypeScript

	
typescript-tslint

	Check syntax and style with TSLint [https://github.com/palantir/tslint].

	
defcustom flycheck-typescript-tslint-config

	Configuration file for this syntax checker. See
Configuration files.

	
defcustom flycheck-typescript-tslint-rulesdir

	Additional rules directory, for user created rules.

	
defcustom flycheck-tslint-args

	A list of additional arguments that are passed to tslint.

Verilog

	
verilog-verilator

	Check syntax with Verilator [https://www.veripool.org/wiki/verilator].

	
defcustom flycheck-verilator-include-path

	A list of include directories. Relative paths are relative to the file
being checked.

XML

Flycheck checks XML with xml-xmlstarlet or xml-xmllint.

	
xml-xmlstarlet

	Check syntax with XMLStarlet [http://xmlstar.sourceforge.net].

	
defcustom flycheck-xml-xmlstarlet-xsd-path

	
defcustom flycheck-xml-xmllint-xsd-path

	Location of XSD schema to validate against for xml-xmlstarlet and
xml-xmllint respectively.

	
xml-xmllint

	Check syntax with xmllint from Libxml2 [http://www.xmlsoft.org/].

YAML

Flycheck checks YAML with yaml-jsyaml or yaml-ruby.

	
yaml-jsyaml

	Check syntax with js-yaml [https://github.com/nodeca/js-yaml].

	
yaml-ruby

	Check syntax with Ruby’s YAML parser.

 Glossary

Glossary

The glossary explains most of the special terms we use in this documentation.
some of these are originally explained in the Emacs manual [https://www.gnu.org/software/emacs/manual/html_node/emacs/index.html] or the Emacs Lisp
reference [https://www.gnu.org/software/emacs/manual/html_node/elisp/index.html], but we reproduce them here for convenience.

	init file	use